

EPA Instrumental Test Methods ENVIRONMENT

ENVIRONMENTAL MONITORING

EPA Method	Test Method Determines	Components Tested	Zero Gas*
3A*	O ₂ % & CO ₂ %	$O_2\%$ &/or $CO_2\%$ in N_2 or mixtures of SO_2 ppm &/or NO_2 ppm + $O_2\%$ &/or $CO_2\%$ in N_2	Defined by CFR 40 72.2
3 & 3B	O ₂ % & CO ₂ % using an ORSAT	O ₂ % &/or CO ₂ % in N ₂ for Audit	
3C	CO_2 %, O_2 %, N_2 % & CH_4 ppm using a thermal conductivity detector (TCD) gas chromatograph	CO_2 , CH_4 , N_2 , O_2 , and other gas components	Carrier Gas. Helium, high-purity
6C*	SO ₂ ppm from stationary sources	SO_2 ppm in Air or N_2 SO_2 ppm &/or $O_2\%$ &/or $CO_2\%$ in N_2	Defined by CFR 40 72.2
7E*	$\ensuremath{NO_{x}}\xspace$ ppm from stationary sources	NO_x ppm in N_2 other mixtures may be used if no interference is caused. NO_2 for Converter Efficiency	Defined by CFR 40 72.2
10*	CO ppm from stationary sources	CO ppm in $N_{\rm 2}$ other mixtures may be used if no interference is caused	Defined by CFR 40 72.2
10A	CO ppm CEM at petroleum refinery	CO ppm in N ₂	Defined by CFR 40 72.2
10B	CO ppm from stationary sources	CO ppm in N_2 & CH ₂ in air	(Helium zero/Hydrogen zero)
15	TRS Emissions from sulfur recovery plants in petroleum refinery	H_2S in N_2 & COS in N_2 & CS_2 in N_2 traceable	<0.5 ppm TRS with <10 ppm H ₂ O & (Oxygen Zero/Zero Nitrogen)
15A	TRS Emissions from sulfur recovery plants in petroleum refinery	COS in N ₂	<50 ppb TRS with <10 ppm Hydrocarbons
16	TRS Emissions from Kraft Pulp Mills	H_2S in N_2 & MeSH in N_2 & DMS in N_2 & DMDS in N_2 traceable	<50 ppb TRS with <10 ppm Hydrocarbons
16A	TRS Emissions from Kraft Pulp Mills	H_2S in N_2	<50 ppb TRS with <10 ppm Hydrocarbons
16B	TRS Emissions from Kraft Pulp Mills	SO_2 in N_2 & H_2S in N_2	<50 ppb TRS with <10 ppm Hydrocarbons
18	Gaseous Organic Compound Emissions by Gas Chromatography	VOC ppm in N ₂ <1-2% or NIST traceable	Defined by CFR 51 Appendix M Method 205
21	Volatile Organic Compound Leaks	VOC ppm in N ₂ or Air <2%	<10 ppm VOC
25	Total Gaseous Nonmethane Organic Emissions (TGNMO) as Carbon	CO, CH ₄ , C ₃ H ₈ , CO ₂ , hexane, toluene, and methanol each in air <1%	He, Air & $O_2 < 1$ ppm HC & $CO_2 < 1$ ppm & < 0.1 ppm HC
25A	Total Gaseous Organic Emissions using FID	C_2H_6,C_3H_8,C_4H_{10} or appropriate in N_2 or Air <2%	Defined by CFR 51 Appendix M Method 205
25B	Total Gaseous Organic Emissions using NDIR	C_2H_6,C_3H_8,C_4H_{10} or appropriate in N_2 or Air <2%	Defined by CFR 51 Appendix M Method 205
25C	Non Methane Organic Compounds (NMOC) in MSW landfill gases	CO, CH ₄ , C ₃ H ₈ , CO ₂ , hexane, toluene, and methanol each in air <1%	<10 ppm VOC
25D	Volatile Organic Concentration of Waste Samples	$\%$ propane and $\%$ 1,1-dichloroethylene in N_2	N ₂ , Air & O ₂ <1ppm C
25E	Phase Organic Concentration in Waste Samples	% propane in N_2 or Air NIST traceable	N_2 , Air & O_2 zero grade <ppm c<="" td=""></ppm>
30A	Hg ⁰ µg/m ³ from stationary sources	Hgº & HgCl ₂ μ g/m³ in N ₂ or Air NIST traceable	No measurable Hg
30B	Hg ⁰ µg/m ³ from stationary sources	Hg ⁰ & HgCl ₂ µg/m ³ in N ₂ or Air NIST traceable	No measurable Hg

pollutant.

EPA PS#	CEM Performance Specification for	Components (recommended but need not be certified)	Zero Gas (need not be certified)
PS 2	SO ₂ ppm &/or NO ₂ ppm	SO ₂ ppm &/or NO ₂ ppm in N ₂	
PS 3	O ₂ % &/or CO ₂ %	O ₂ % &/or CO ₂ % in N ₂ for Audit	
PS 4	CO ppm	1000 CO ppm on N ₂	
PS 4A	CO ppm	<200 CO ppm on N ₂	
PS 5	TRS ppm	H ₂ S ppm or other TRS in N ₂	
PS 7	TRS ppm	H ₂ S ppm or other TRS in N ₂	
PS 8	VOC ppm	$CH_4,C_2H_6,C_3H_8,C_4H_{10}ppm$ or appropriate in N_2 or Air	
PS 9	Specific VOC ppm by GC	Specific VOC ppm in N2 or Air <2%	Defined by CFR 40 72.2
PS 12	Hg	Hg in N ₂	
PS 12A	Hg	Hg in N ₂	
PPS 011 ETV /erification	NH ₃ ppm	$\rm NH_3$ in $\rm N_2$ NIST or $\rm N_{mi}$ <3%	
PS-18	HCI ppm	HCl in N ₂	Defined by CFR 40 72.2

Proposed Method 322 - HCI Emissions from Portland Cement Kilns by GFCIR 3/11/98 (WordPerfect version).

Proposed Method 323 - Measurement of Formaldehyde Emissions from Natural Gas-Fired Stationary Sources - Acetyl Acetone Derivitization Method (FR Vol. 68, No. 9, Tuesday, Jan. 14, 2003 Pgs. 1925-1929).

(111 vol. 00, 140. 0, 10650ay, 0att. 14, 2000 FYS. 192

ENVIRONMENTAL MONITORING EPA Protocols a

EPA Protocols and Traceability Standards

EPA Protocol Gas Mixture					
	Concentration Range	CGA Connection	Cylinder Size*	Contents	Recommended Two-Stage Regulato
Carbon Dioxide	300 ppm - < 1%	590	150A	143	Y12-T265D590
n Air	1% - 30%	590	TOUA	145	E23
Carbon Dioxide	300 ppm - < 1%	580	150A	140	Y12-T265D580
n Nitrogen	1% - 30%	500	IJUA	140	E23
Carbon Monoxide	2 ppm - <100 ppm				Y12-T265D590
n Air	100 ppm - <1%	590	150A	143	E23
	1% - 6.25%				
Carbon Monoxide	2 ppm - <100 ppm				Y12-T265D350
n Nitrogen	100 ppm - <1%	350	150A	140	E23
	1% - 13%				
Hydrogen Sulfide	2 ppm - <100 ppm	330	150A	140	Y12-C445D330
n Nitrogen	100 ppm - 1000 ppm				E28
Methane in Air	0.5 ppm - <100 ppm	590	150A	143	Y12-N245D590
	100 ppm - 1000 ppm		100,1		E21
Nitric Oxide	0.4 ppm - <100 ppm	660	150A	140	Y12-C445D660
n Nitrogen	100 ppm - 5000 ppm		100/1	110	E28
		<5% CGA 580			
Dxygen	1000 ppm - <1%	≥5% - 23.5% CGA 590	150A	140	Y12-N245D (CGA)
n Nitrogen	1% - 30%	>23.5% CGA 296			E21
Propane in Air	0.25 ppm - <100 ppm				Y12-N245D590
	100 ppm - <0.1%	590	150A	143	E21
	0.1% - 1%				
Propane in Nitrogen	0.25 ppm - <100 ppm				Y12-N245D350
	100 ppm - <0.1%	350	150A	140	E21
	0.1% - 1%				
Sulfur Dioxide	2 ppm - <100 ppm				Y12-C445D660
n Air	100 ppm - <1000 ppm	660	150A	143	E28
	1000 ppm - 5000 ppm				
Sulfur Dioxide	2 ppm - <100 ppm				Y12-C445D660
n Nitrogen	100 ppm - <1000 ppm	660	150A	140	E28
	1000 ppm - 5000 ppm				
Sulfur Dioxide,	2 ppm - 5000 ppm	660	150A	143	Y12-C445D660
Nitric Oxide in Nitrogen	0.4 ppm - 5000 ppm	000	AUCT	143	E28
Sulfur Dioxide,	2 ppm - 5000 ppm	000	1504	140	Y12-C445D660
Dxygen in Nitrogen	0.1% - 30%	660	150A	143	E28
Carbon Dioxide,	300 ppm - 30%	<5% CGA 580			Y12-N245D (CGA)
Oxygen in Nitrogen	0.1% - 30%	≥5% - 23.5% CGA 590	150A	143	E21
		>23.5% CGA 296			
Sulfur Dioxide,	2 ppm - 5000 ppm				Y12-C445D660
Nitric Oxide,	2 ppm - 5000 ppm	660	150A	143	E28
Carbon Dioxide in Nitrogen	300 ppm - 30%				
Sulfur Dioxide,	2 ppm - 5000 ppm				Y12-C445D660
Nitric Oxide,	2 ppm - 5000 ppm	660	150A	143	E28
Carbon Monoxide in Nitrogen	2 ppm - 13%				
Sulfur Dioxide,	2 ppm - 5000 ppm				Y12-C445D660
litric Oxide,	2 ppm - 5000 ppm	000	1501	4.10	E28
Carbon Dioxide,	300 ppm - 30%	660	150A	143	
Carbon Monoxide in Nitrogen	2 ppm - 13%				

* Airgas® EPA Protocol gases are supplied in aluminum cylinders, sizes 150A, 80A, and 33A.

** Contents represent approximations; actual volumes are determined by the concentrations of the minor components.

CEM Daily Calibration Standards

ENVIRONMENTAL MONITORING

Where EPA Protocol Standards are not required, Continuous Emissions Monitoring (CEM) Daily Calibration Standards are blended to the same exacting standards, are NIST Traceable, and have an analytical accuracy of $\pm 2\%$. In addition to those

components and combinations of components listed as EPA Protocol Standards, the following mixtures are available as daily calibration standards:

CEM Daily Calibration Gases Equipment Recomme					
Daily Calibration Standards	Concentration Range	CGA Connection	Cylinder Size	Contents ft ³	Recommended Two-Stage Regulator
Ammonia in Nitrogen	5 ppm - <100 ppm 100 ppm - <1% 1% - 4%	705	150A	140	Y12-T265D705 E23
Carbon Dioxide in Air	300 ppm - <1% 1% - 30%	590	150A	143	Y12-T265D590 E23
Carbon Dioxide in Nitrogen	300 ppm - <1% 1% - 30%	580	150A	140	Y12-T265D580 E23
Carbon Monoxide in Air	2 ppm - <100 ppm 100 ppm - <1% 1% - 6.25%	580	150A	143	Y12-T265D590 E23
Carbon Monoxide in Nitrogen	2 ppm - <100 ppm 100 ppm - <1% 1% - 20%	350	150A	140	Y12-T265D350 E23
Hydrogen Chloride in Nitrogen	2 ppm - <100 ppm 100 ppm - 1000 ppm	330	150A	140	Y12-T265D330 E23
Hydrogen Sulfide in Nitrogen	2 ppm - <100 ppm 100 ppm - 1000 ppm	330	150A	140	Y12-T265D330 E23 E23
Nitric Oxide in Nitrogen	2 ppm - <100 ppm 100 ppm - <1% 1% - 6.25%	660	150A	140	Y12-T265D660 E23
Oxygen in Nitrogen	100 ppm - <1% 1% - 30%	<5% CGA 580 ≥5% -23.5% CGA 590 >23.5% CGA 296	150A	140	Y12-T265D590/296 E23
Propane in Air	1 ppm - <100 ppm 100 ppm - <1000 ppm 1000 ppm - 1%	590	150A	143	Y12-T265D590 E23
Propane in Nitrogen	1 ppm - <100 ppm 100 ppm - <1000 ppm 1000 ppm - 2%	350	150A	140	Y12-T265D350 E23
Sulfur Dioxide in Air	5 ppm - <100 ppm 100 ppm - <1000 ppm 1000 ppm - 2%	660	150A	143	Y12-T265D660 E23
Sulfur Dioxide in Nitrogen	5 ppm - <100 ppm 100 ppm - <1000 ppm 1000 ppm - 2%	660	150A	140	Y12-T265D660 E23

CEM Zero Gases

CEM Zero Gases					Equipment Recommendations
Gas	Purity Specifications	CGA Connection	Cylinder Size	Contents ft ³	Recommended Two-Stage Regulator
CEM Zero Air*	$\begin{array}{llllllllllllllllllllllllllllllllllll$	80A	150A 76	144 E23	Y12-T265D590
CEM Zero Nitrogen*	$\begin{array}{lll} CO & \leq 0.5 \ \text{ppm} \\ CO_2 & \leq 1 \ \text{ppm} \\ NO_x & \leq 0.1 \ \text{ppm} \\ SO_2 & \leq 0.1 \ \text{ppm} \\ THC & \leq 0.1 \ \text{ppm} \end{array}$	580	150A 80A	140 76	Y12-T265D580 E23
Follows CFR Specifications for zero am Batch Certificates of Analysis included *Meets the requirements of CFR 72.2					

Special Applications

ENVIRONMENTAL MONITORING Non EPA Protocol Calibration Gases

Elemental Mercury Gas Specifications

- Concentrations range from 1 μg/M³ to 60 μg/M³ (100ppT to 6ppB)
- Balance Air or Nitrogen
- Pressure (depending on cylinder size) 300A's = 2000 PSIG (5500 Usable Liters) 150A's = 1800 PSIG (3600 Usable Liters)
- Directly traceable to NIST certified Vendor Prime Mercury Generator
- Analytical Accuracy ±5% (currently)
- 6 month stability

How will elemental mercury calibration gas cylinders be used

- Traceability Protocol for Elemental Mercury Gas Generators routine audit test.
- Instrumental Test method 30b (spiking)
- Substitute for mercury gas generators (broken, failures, etc.)
- Overall independent spot check for systems.

Ammonia Calibration Standards

Accurate to keep you compliant and safe

- Comply with your Title V monitoring requirements.
- Traceable to VSL (Dutch National Laboratory) and NIST
- Non Traceable available
- Meets the requirements of EPA tests for stationary source monitoring such as: Preliminary Performance Specification 001 (PPS-

001) Ammonia CEMS

http://www.epa.gov/ttn/emc/prelim.html Molybdenum vs. Stainless Steel differential converter test Method 7E – NOx – Instrumental http://www.epa.gov/ttn/emc/promgate.html

 OSHA monitoring test gas for: OSHA permissible exposure limit (PEL) of 50 parts per million (ppm) The OSHA (former) standard of 35 ppm (as a 15

minute Short Term Exposure Limit (STEL))

http://www.ufcw.org/your_industry/manufacturing/ safety_health_news_and_facts/ammonia_hazards.cfm

FEATURES:

- Ranges from 5 ppm to 1,000 ppm
- 12 month stability
- Traceable to VSL and NIST
- Available in Air and Nitrogen

ZERO GAS

EPA requires the use of Zero gas that meets the requirements of 40 CFR 72.2 in EPA CFR 40 part 60 EPA test methods, and EPA CFR 40 Part 75.

Airgas[®] Standard Operating Procedures assure that we provide a certification verifying that the contents meet CFR 40 72.2 that the calibration gas does not contain concentrations of SO₂, NOx, or total hydrocarbons above 0.1 parts per million (ppm), a concentration of CO above 1 ppm, or a concentration of CO₂ above 400 ppm.

Hydrogen Chloride (HCI)

Airgas has performed extensive stability studies and has documented the stability of HCI mixtures supporting the 12 month certification period. Airgas provided HCI mixtures pass the stringent PADEP requirements for HCI used for calibration of CEMS as well as many applications including incineration, waste to energy facilities, and industrial hygiene.

HCI mixture specifications:

Cylinder size: 150A 300A

Concentrations: 2 ppm–1000 ppm

Shelf Life: 6 months for PADEP HCI (or other states

requiring 6 months)

12 months elsewhere

Meets the requirements of US EPA HCI Performance Specification PS-18

Certification Periods for EPA Protocol gases in accordance with the May 2012 "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards"

Certified Component	Balance Gas	Applicable range	Certification period (months)
Ammonia	Nitrogen	≥5 ppm	12
Carbon dioxide	Air	≥360 ppm	96
Carbon Dioxide	Nitrogen	≥100 ppm	96
Carbon monoxide	Nitrogen or Air	≥2 ppm	96
Hydrogen Sulfide	Nitrogen	≥2 ppm	36
Methane	Nitrogen or Air	≥1 ppm	96
Nitric Oxide	Nitrogen (O ₂ -free)	0.5 to 50 ppm	36
Nitric Oxide	Nitrogen (O ₂ -free)	≥50 ppm	96
Nitrous Oxide	Air	≥0.3 ppm	96
Oxides of Nitrogen (NO ₂)	Air	≥3 ppm	36
Oxides of Nitrogen (NO ₂)	Nitrogen (O ₂ doped)	≥3 ppm	36
Oxygen	Nitrogen	≥0.2%	96
Propane	Air	>0.25 ppm	96
Propane	Nitrogen	>0.25 ppm	96
Sulfur Dioxide	Nitrogen or Air	1 to 50 ppm	48
Sulfur Dioxide	Nitrogen or Air	≥50 ppm	96
Mixtures with lower concentration	ons are certified for 6 months.		

An EPA Protocol mixture can be recertified if the residual pressure after analysis is >100psig

EPA Protocol mixtures are certified down to a minimum use pressure of 100psig

O₂-free Nitrogen contains <100ppB of oxygen

Check your Certificates of Analysis (COA):

The contents of the Certification of Analysis and sidewall label that are provided with each EPA Protocol gas cylinder are extremely important. These are frequently reviewed by local, state and EPA air quality enforcement personnel to ensure they meet mandatory requirements. A quick check of your COA can save you fines and aggravation. The following are the minimum requirements for information on an EPA Protocol gases COA:

- 1. Cylinder identification number (e.g. stamped cylinder number)
- 2. The certified concentrations for the assayed components of the Protocol gas, with values provided to at least 3 significant figures, and the balance gas
- 3. The calculated estimate of 95% uncertainty for each named component
- 4. Cylinder pressure at certification and statement that the Protocol gas cannot be used below 100psig, i.e. 0.7 megapascals
- 5. Dates of the assays and certification. The certification date is the date of the last assay
- 6. Certification expiration date
- 7. Information about each reference standard used in the assay:
 - a. For an NTRM, RGM or PRM: standard type, cylinder number, certified concentration, expanded uncertainty, certification expiration date
 - b. For a GMIS: cylinder number, certified concentration, expanded uncertainty, expiration date plus information (7.a.) about the reference material used in certifying the GMIS
- 8. Statement that the assay/certification was performed according to EPA Protocol document EPA 600/R-12/531 – plus the Procedure used: G1 or G2
- 9. The analytical method(s) used in the assays and date of the most recent multipoint calibration for each instrument used in the assays
- 10. Identification of the specialty gas producer: Company, laboratory name, city and state, PGVP vendor ID
- 11. Chronological record of all certifications for the standard

* As required by "EPA Traceability Protocol Assay and Certification of Gaseous Calibration Standard (EPA 600/R-12/531 May 2012) Documentation" ** In some cases the states and local air agencies can ask for more information on a Certificate of Analysis.

ENVIRONMENTAL MONITORING

G Air Toxics Monitoring

EPA TO-14 Calibration Standard - 42 Components, 100 ppb or 1 ppm each in Nitrogen

Benzene 1,3-Butadiene Carbon Tetrachloride Chlorobenzene Chloroform Chloromethane 3-Chloropropylene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane 1,1-Dichloroethane 1,2-Dichloroethane 1,1-Vinylidene Chloride cis-1,2-Dichloroethylene Dichloromethane 1,2-Dichloropropane cis-1,3-Dichloropropene trans-1,3-Dichloropropene 1,2-Dichloro-1,1,2,2-tetrafluoroethane Ethylbenzene 4-Ethyltoluene Ethyl Chloride Hexachloro-1,3-butadiene Methyl Bromide Styrene 1,1,2,2-Tetrachloroethane Tetrachloroethylene Toluene 1,2,4-Trichlorobenzene 1,1,1-Trichloroethane 1,1,2-Trichloroethane

Trichloroethylene Trichlorofluoromethane 1,1,2-Trichloro-1,2,2-trifluoroethane 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Vinyl Chloride m-Xylene o-Xylene p-Xylene

EPA TO-14 Chlorinated	I Hydrocarbon Mixture (16 Co	mponents, 100 ppb or 1 ppr	n each in Nitrogen)
Carbon Tetrachloride 1,2-Dichloropropane Chloroform cis-1,3-Dichloropropene	Chloromethane Hexachloro-1,3-butadiene 1,1-Dichloroethane 1,1,2,2-Tetrachloroethane	1,2-Dichloroethane Tetrachloroethylene 1,1-Dichloroethylene 1,1,2-Trichloroethane	cis-1,2-Dichloroethylene Trichloroethylene Dichloromethane Vinyl Chloride

EPA TO-14 Aromatics	Mixture (14 Components, 100	ppb or 1 ppm each in Nitro	gen)
Benzene	1,2-Dichlorobenzene	1,4-Dichlorobenzene	Styrene
Toluene	1,2,4-Trimethylbenzene	m-Xylene	p-Xylene
Chlorobenzene	1,3-Dichlorobenzene	Ethylbenzene	
1,2,4-Trichlorobenzene	1,3,5-Trimethylbenzene	o-Xylene	

EPA TO-14 CFC/HC	EPA TO-14 CFC/HCFC Mixture (4 Components, 100 ppb or 1 ppm each in Nitrogen)				
Halocarbon 11 Halocarbon 12	Halocarbon 113 Halocarbon 114				

EPA TO-14 GC/MS Inte	ernal Standard (3 Components	100 ppb or 1 ppm each in Nitrogen)	
Bromochloromethane	Chlorbenzene - D5	1,4-Difluorobenzene	
EPA TO-14 Internal/Tu	ning Standard (3 Components,	100 ppb or 1 ppm each in Nitrogen)	
Bromochloromethane	Chlorbenzene - D5	Bromofluorobenzene	

BTEX Mixture (6 Components, 100 ppb or 1 ppm each in Nitrogen)					
Benzene Ethylbenzene Toluene	m-Xylene o-Xylene p-Xylene				

Mobile Emissions Monitoring

ENVIRONMENTAL MONITORING

Airgas[®] provides a complete range of certified California BAR (Bureau of Automotive Repair) blends for emissions certification, state vehicle inspection and IM testing, and independent testing laboratories. Products include both standard and enhanced emission monitoring gases, multiple component gases for test equipment calibration, and Vehicle Emission Zero Air used prior to every vehicle test. Gases are produced in California BAR-certified facilities using a dynamic blending process that ensures repeatable calibration accuracy.

State auto emissions programs using either 2-speed idle testing or loaded mode testing				
Calibration & Audit Gases	Concent	Concentrations		
Low-Range BAR-97 with Nitric Oxide (NO) Blend Code 32	200 ppm 0.50% 6.0% 300 ppm Balance:	Propane (HC) Carbon Monoxide (CO) Carbon Dioxide (CO ₂) Nitric Oxide (NO) (< 3 ppm NO ₂) Oxygen-free Nitrogen (N ₂)		
High-Range BAR-97 with Nitric Oxide (NO) Blend Code 35	3200 ppm 8.00% 12.0% 3000 ppm Balance:	Propane (HC) Carbon Monoxide (CO) Carbon Dioxide (CO ₂) Nitric Oxide (NO) (< 3 ppm NO ₂) Oxygen-free Nitrogen (N ₂)		
BAR-97 Vehicle Emission Zero Air Blend Code 37	<1 ppm <1 ppm <400 ppm <1 ppm 20.9% Balance:	Total Hydrocarbons (THC) Carbon Monoxide (CO) Carbon Dioxide (CO ₂) Nitric Oxide (NO) Oxygen (O ₂) Oxygen-free Nitrogen (N ₂)		
High-Range BAR-97 Blend Code 34	3200 ppm 8.00% 12.0% Balance:	Propane (HC) Carbon Monoxide (CO) Carbon Dioxide (CO ₂) Oxygen-free Nitrogen (N ₂)		

Used for auto emissions inspection and IM programs using 2-speed in				
Calibration & Audit Gases	& Audit Gases Concentrations			
Low-Range BAR-90ET Blend Code 11	300 ppm 1.00% 6.0% Balance:	Propane (HC) Carbon Monoxide (CO) Carbon Dioxide (CO ₂) Nitrogen (N ₂)		
Mid-Range BAR-90ET Blend Code 12	1200 ppm 4.00%	Propane (HC) Carbon Monoxide (CO)		

	12.0% Balance:	Carbon Dioxide (CO ₂) Nitrogen (N ₂)
Low-Range BAR-84 Blend Code 13	600 ppm 1.60%	Propane (HC) Carbon Monoxide (CO)
	11.0% Balance:	Carbon Dioxide (CO ₂) Nitrogen (N ₂)

Note: For a complete listing of blends and audit standards contact your local Airgas® representative.

IM240 Audit Gas IM240 Calibration Gas*

					IM240 FID OXIDIZER
	These products can be single or multicomponent gases with the following limitations:			A mixture of 18-21% Oxygen in Nitrogen or Argon, used as the	
	Components	Balance Gas	Accuracy	Expiration	oxidant gas for the Hydrocarbon analyzer.
	Carbon Monoxide	Air or Nitrogen	+/_ 1%	36 months	
	Carbon Dioxide	Air or Nitrogen	+/_ 1%	36 months	THC < 1 ppm
	Propane	Air only	+/_ 1%	36 months	- 111
	Nitric Oxide	Nitrogen only	+/_ 1%	24 months	IM240 FID FUEL GAS
n 6 6	Analytical results an	,		elative.	A mixture of 40% Hydrogen in Helium used as the fuel gas for the Hydrocarbon analyzer. Blend tolerance: ⁺ /- 2% absolute THC < 1 ppm

*IM240 Calibration and Span gases will be supplied with a Certificate of Analysis.

IM240 NOx Converter Efficiency Test Mix

IM240 FID CHECK GAS

A mixture of 200 ppm Nitrogen Dioxide (NO₂) in Air, which is used for the weekly check of the NOx converter in a Chemiluminescent analyzer.

Blend tolerance: +/- 100 ppm absolute Analytical tolerance: +/- 2% Expiration date: 12 months

check of the response	e of the Hydrocarbon analyzer.
Blend tolerance:	+/_ 5% relative
Analytical tolerance	+/ 2% relative

The mixture is 50 ppm Methane in Air used for the monthly

IM240 SPAN GAS*

Expiration date:

Components	Balance Gas	Accuracy	Expiration	
Carbon Monoxide	Air or Nitrogen	+/_2%	36 months	
Carbon Dioxide	Air or Nitrogen	+/_2%	36 months	
Propane	Air only	+/_2%	36 months	
Nitric Oxide	Nitrogen only	+/_2%	24 months	
Analytical results are directly traceable to NIST.				
Blend tolerance shall be no more than $^{+}/_{-}$ 5% relative.				

36 months